Multidimensional Data Structures
An important source of media data is geographic data.

A geographic information system (GIS) stores information about some physical region of the world.

A map is just viewed as a 2-dimensional image, and certain “points” on the map are considered to be of interest.

These points are then stored in one of many specialized data structures.

- k-d Trees
- Point Quadtrees
- MX-Quadtrees

Alternatively, we may wish to store certain rectangular regions of the map.

We will study one data structure – the R-tree – that is used to store such rectangular data.
Example Maps

(a) Map with Marked Points
(b) Map with Marked Regions
k-D Trees

- Used to store *k* dimensional point data.
- It is *not* used to store *region* data.
- A 2-d tree (i.e. for *k* = 2) stores 2-dimensional point data while a 3-d tree stores 3-dimensional point data, and so on.
Node Structure

```plaintext
nodetype = record
    INFO: infotype;
    XVAL: real;
    YVAL: real;
    LLINK: ↑nodetype
    RLINK: ↑nodetype
end

<table>
<thead>
<tr>
<th>INFO</th>
<th>XVAL</th>
<th>YVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLINK</td>
<td></td>
<td>RLINK</td>
</tr>
</tbody>
</table>
```

- INFO field is any user-defined type whatsoever.
- XVAL and YVAL denote the coordinates of a point associated with the node.
- LLINK and RLINK fields point to two children.
2-d trees, formally

Level of nodes is defined in the usual way (with root at level 0).

Def: A 2-d tree is any binary tree satisfying the following condition:

1. If N is a node in the tree such that $\text{level}(N)$ is even, then every node M in the subtree rooted at $N.LLINK$ has the property that $M.XVAL < N.XVAL$ and every node P in the subtree rooted at $N.RLINK$ has the property that $P.XVAL \geq N.XVAL$.

2. If N is a node in the tree such that $\text{level}(N)$ is odd, then every node M in the subtree rooted at $N.LLINK$ has the property that $M.YVAL < N.YVAL$ and every node P in the subtree rooted at $N.RLINK$ has the property that $P.YVAL \geq N.YVAL$.
Example 2-d Trees

(a) (b) (c)

(d) (e)
Insertion/Search in 2-d Trees

To insert a node N into the tree pointed to by T, do as follows:

- Check to see if N and T agree on their XVAL and YVAL fields.
- If so, just overwrite node T and we are done.
- Else, branch left if $N.XVAL < T.XVAL$ and branch right otherwise.
- Suppose P denotes the child we are examining. If N and P agree on their XVAL and YVAL fields, just overwrite node P and we are done, else branch left if $N.YVAL < P.YVAL$ and branch right otherwise.
- Repeat this procedure, branching on XVAL’s when we are at even levels in the tree, and on YVALs when we are at odd levels in the tree.
Example of Insertion

Suppose we wish to insert the following points.

<table>
<thead>
<tr>
<th>City</th>
<th>(XVAL,YVAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banja Luka</td>
<td>(19,45)</td>
</tr>
<tr>
<td>Derventa</td>
<td>(40,50)</td>
</tr>
<tr>
<td>Toslic</td>
<td>(38,38)</td>
</tr>
<tr>
<td>Tuzla</td>
<td>(54,35)</td>
</tr>
<tr>
<td>Sinj</td>
<td>(4,4)</td>
</tr>
</tbody>
</table>
Example of Insertion

(a) Splitting of region by Banja Luka
(b) Splitting of region by Derventa

(c) Splitting of region by Toslic
(d) Splitting of region by Sinj
Deletion in 2-d Trees

Suppose T is a 2-d tree, and (x, y) refers to a point that we wish to delete from the tree.

- Search for the node N in T that has $N.XVAL = x$ and $N.YVAL = y$.
- If N is a leaf node, then set the appropriate field (LLINK or RLINK) of N's parent to NIL and return N to available storage.
- Otherwise, either the subtree rooted at $N.LLINK$ (which we will denote by T_ℓ) or the subtree rooted at $N.RLINK$ (which we will denote by T_r) is non-empty.

(Step 1) Find a “candidate replacement” node R that occurs either in T_i for $i \in \{\ell, r\}$.

(Step 2) Replace all of N’s non-link fields by those of R.

(Step 3) Recursively delete R from T_i.

- The above recursion is guaranteed to terminate as T_i for $i \in \{\ell, r\}$ has strictly smaller height than the original tree T.
Finding Candidate Replacement Nodes for Deletion

- The desired replacement node R must bear the same spatial relation to all nodes P in both T_l and T_r that N bore to P
- I.e. if P is to the southwest of N, then P must be to the southwest of R. If P is to the northwest of N, then P must be to the northwest of R, and so on.

This means that the desired replacement node R must satisfy the property that:

1. Every node M in T_l is such that: $M.XVAL < R.XVAL$ if $\text{level}(N)$ is even and $M.YVAL < R.YVAL$ if $\text{level}(N)$ is odd.

2. Every node M in T_r is such that: $M.XVAL \geq R.XVAL$ if $\text{level}(N)$ is even and $M.YVAL \geq R.YVAL$ if $\text{level}(N)$ is odd.

- If T_r is not empty, and $\text{level}(N)$ is even, then any node in T_r that has the smallest possible $XVAL$ field in T_r is a candidate replacement node.
- But if T_r is empty, then we might not be able to find a candidate replacement node from T_l (why?).
• In this case, find the node R' in T_{ℓ} with the smallest possible XVAL field. Replace N with this.

• Set $N.RLINK = N.LLINK$ and set $N.LLINK = NIL$.

• Recursively delete R'.
Range Queries in 2-d Trees

- A range query with respect to a 2-d tree T is a query that specifies a point (x_c, y_c), and a distance r.

- The answer to such a query is the set of all points (x, y) in the tree T such that (x, y) lies within distance d of (x_c, y_c).

- I.e. A range query defines a circle of radius r centered at location (x_c, y_c), and expects to find all points in the 2-d tree that lie within the circle.

- Recall that each node N in a 2-d tree implicitly represents a region R_N.

- If the circle specified in a query has no intersection with R_N, then there is no point searching the subtree rooted at node N.
Example Range Query
Point Quadtrees

- Point quadtrees always split regions into *four* parts.
- In a 2-d tree, node N splits a region into two by drawing one line through the point $(N.XVAL, N.YVAL)$.
- In a point quadtree, node N splits the region it represents by drawing *both* and horizontal *and* a vertical line through the point $(N.XVAL, N.YVAL)$.
- These four parts are called the NW (northwest), SW (southwest), NE (northeast) and SE (southeast) quadrants determined by node N.
- Each of these quadrants corresponds to a child of node N. Thus, quadtree nodes may have upto 4 children each.
- Node structure in a point quadtree:

```plaintext
qtnodetype = record
  INFO: infotype;
  XVAL: real;
  YVAL: real;
  NW, SW, NE, SE: ↑qtnodetype
end
```
Nodes in Point Quadtrees Implicitly Represent Regions
Insertion into Point Quadtrees

<table>
<thead>
<tr>
<th>City</th>
<th>(XVAL,YVAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banja Luka</td>
<td>(19,45)</td>
</tr>
<tr>
<td>Derventa</td>
<td>(40,50)</td>
</tr>
<tr>
<td>Toslic</td>
<td>(38,38)</td>
</tr>
<tr>
<td>Tuzla</td>
<td>(54,35)</td>
</tr>
<tr>
<td>Sinj</td>
<td>(4,4)</td>
</tr>
</tbody>
</table>
Insertion into Point Quadtrees
(a) Splitting of region by Banja Luka
(b) Splitting of region by Derventa
(c) Splitting of region by Toslic
(d) Splitting of region by Tuzla
Insertion into Point Quadtrees

(a) Banja Luka (19,45) (b) Banja Luka (19,45) (c) Banja Luka (19,45)
 Derventa (40,50) Derventa (40,50) Toslic (38,38)

(d) Banja Luka (19,45) (e) Banja Luka (19,45)
 Derventa (40,50) Toslic (38,38) Sinj (4,4) Toslic (38,38)
 Tuzla (54,35) Tuzla (54,35)
Deletion in Point Quadtrees

- If the node being deleted is a leaf node, deletion is completely trivial: we just set the appropriate link field of node \(N \)'s parent to NIL and return the node to available storage.

- As in the case of deletion in 2-d trees, we need to find an appropriate replacement node for non-leaf nodes being deleted.

- Is this easy?

- No. Why? Return to Previous slide.
Expanded Node Type

- Expand the node structure `qtnodetype` to a new node structure `newqtnodetype`

- \[\text{\texttt{qtnodetype}} = \text{\texttt{record}} \]
 \[\text{INFO: infotype;} \]
 \[\text{XVAL,YVAL: real;} \]
 \[\text{XLB,YLB,XUB,YUB: real} \cup \{-\infty, +\infty\} \]
 \[\text{NW,SW,NE,SE: } \uparrow \text{\texttt{qtnodetype}} \]

- When inserting a node \(N \) into the tree \(T \), we need to ensure that:
 - If \(N \) is the root of tree \(T \), then \(N.XLB = -\infty, N.YLB = -\infty, N.XUB = +\infty, N.YUB = +\infty \).
 - If \(P \) is the parent of \(N \) then the following table describes what \(N \)'s XLB, YLB, XUB, YUB fields should be, depending upon whether \(N \) is the NW, SW, NE, SE child of \(P \). We use the notation \(w = (P.XUB - P.XLB) \) and \(h = (P.YUB - Y.YLB) \).

<table>
<thead>
<tr>
<th>Case</th>
<th>N.XLB</th>
<th>N.XUB</th>
<th>N.YLB</th>
<th>N.YUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=P.NW</td>
<td>P.XLB</td>
<td>(P.XLB + w \times 0.5)</td>
<td>(P.YLB + h \times 0.5)</td>
<td>(P.YUB)</td>
</tr>
<tr>
<td>N=P.SW</td>
<td>P.XLB</td>
<td>(P.XLB + w \times 0.5)</td>
<td>(P.YLB + h \times 0.5)</td>
<td>(P.YUB)</td>
</tr>
<tr>
<td>N=P.NE</td>
<td>(P.XLB + w \times 0.5)</td>
<td>P.XUB</td>
<td>(P.YLB + h \times 0.5)</td>
<td>(P.YUB)</td>
</tr>
<tr>
<td>N=P.SE</td>
<td>(P.XLB + w \times 0.5)</td>
<td>P.XUB</td>
<td>P.YLB</td>
<td>(P.YLB + h \times 0.5)</td>
</tr>
</tbody>
</table>
Deletion in Point Quadtrees, Continued

- When deleting an interior node N, we must find a replacement node R in one of the subtrees of N (i.e. in one of $N.NW, N.SW, N.NE, N.SE$) such that:
 * every other node R_1 in $N.NW$ is to the north west of R,
 * every other node R_2 in $N.SW$ is to the south west of R,
 * every other node R_3 in $N.NE$ is to the north east of R and
 * every other node R_4 in $N.SE$ is to the south east of R.
- Consider the figure on the next page.
- Suppose we wish to delete Banja Luka from this quadtree. In this case, one such replacement node can in fact be found, viz. Toslic.
- However, in general, it may not always be possible to find such a replacement node. See the figure in the page after next.
Deletion of Banja Luka
(a) Splitting of region by Banja Luka (b) Splitting of region by Derventa

(c) Splitting of region by Toslic (d) Splitting of region by Tuzla
Thus, in general, deletion of an interior node N may require reinsertion of all nodes in the subtrees pointed to by $N.NE$, $N.SE$, $N.NW$ and $N.SW$. In the worst case, this may require almost all nodes to be reinserted.
Range Searches in Point Quadtrees

- Each node in a point quadtree represents a region.
- Do not search regions that do not intersect the circle defined by the query.

\[\text{proc RangeQueryPointQuadtree}(T:\text{newqtnodetype}, C:\text{circle}); \]

1. \textbf{If} region(T) \cap $C = \emptyset \textbf{ then Halt} \\
2. \textbf{else} \\
 \hspace{1em} (a) \textbf{If} (T.XVAL, T.YVAL) \in C \textbf{ then print} (T.XVAL, T.YVAL); \\
 \hspace{1em} (b) RangeQueryPointQuadtree(T.NW,C); \\
 \hspace{1em} (c) RangeQueryPointQuadtree(T.SW,C); \\
 \hspace{1em} (d) RangeQueryPointQuadtree(T.NE,C); \\
 \hspace{1em} (e) RangeQueryPointQuadtree(T.SE,C); \\
\]

\textbf{end proc}
The MX-Quadtree

- For both 2-d trees as well as point quadtrees, the “shape” of the tree depends upon the order in which objects are inserted into the tree.

- In addition, both 2-d trees and point quadtrees split regions into 2 (for 2-trees) or 4 (for point quadtrees) sub-regions — however, the split may be uneven depending upon exactly where the point \((N.XVAL, N.YVAL)\) is located inside the region represented by node \(N\).

- MX-quadtrees attempt to: ensure that the shape (and height) of the tree are independent of the number of nodes present in the tree, as well as the order of insertion of these nodes.

- MX-quadtrees also attempt to provide efficient deletion and search algorithms.
The MX-Quadtree

- Assume that the map being represented is “split up” into a grid of size \((2^k \times 2^k)\) for some \(k\).
- The application developer is free to choose \(k\) as s/he likes to reflect the desired granularity, but once s/he chooses \(k\), s/he is required to keep it fixed.

Example:
The MX-Quadtree

- **Node Structure**: Exactly the same as for point quadtrees, except that the root of an MX-quadtree represents the region specified by $\text{XLB} = 0$, $\text{XUB} = 2^k$, $\text{YLB} = 0$, $\text{YUB} = 2^k$.

- When a region gets “split”, it gets split down the middle. Thus, if N is a node, then the regions represented by the four children of N are described by the following table.

<table>
<thead>
<tr>
<th>Child</th>
<th>XLB</th>
<th>XUB</th>
<th>YLB</th>
<th>YUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>N.XLB</td>
<td>N.XLB+$\frac{w}{2}$</td>
<td>N.YLB+$\frac{w}{2}$</td>
<td>N.YLB+w</td>
</tr>
<tr>
<td>SW</td>
<td>N.XLB</td>
<td>N.XLB+$\frac{w}{2}$</td>
<td>N.YLB</td>
<td>N.YLB+$\frac{w}{2}$</td>
</tr>
<tr>
<td>NE</td>
<td>N.XLB+$\frac{w}{2}$</td>
<td>N.XLB+w</td>
<td>N.YLB+$\frac{w}{2}$</td>
<td>N.YLB+w</td>
</tr>
<tr>
<td>SE</td>
<td>N.XLB+$\frac{w}{2}$</td>
<td>N.XLB+w</td>
<td>N.YLB</td>
<td>N.YLB+$\frac{w}{2}$</td>
</tr>
</tbody>
</table>

Here, w denotes the width of the region represented by N.
Insertion in MX-Quadtreese
Insertion in MX-Quadtrees

After insertion of A

After Insertion of B

After insertion of C

After Insertion of D
Deletion in MX-Quadtrees

- Deletion in an MX-quadtrees is a fairly simple operation, because all points are represented at the leaf level.

- If N is an interior (i.e. non-leaf) node in an MX-quadtrees whose root is pointed to by T, then the region implicitly represented by node N contains at least one point that is explicitly contained in the tree.

- If we wish to delete a point (x, y) from tree T, we try to preserve this property.

- This can be done as follows.
 * First, we set the appropriate link of N's parent to NIL.
 * We then check if all the four link fields of M are NIL.
 * If so, we examine M's parent (let us call it P for now). As M is P's child, we find a link field dir_1 such that $P.dir_1 = M$. We then set $P.dir_1 = \text{NIL}$ and then (as before) check to see if P's four link fields are all NIL.
 * If so, we continue this process.

- Total time required for deletion is $O(k)$.
Range Queries in MX-Quadtrees

Handled in exactly the same way as for point quadtrees. But there are two differences:

- The content of the XLB, XUB, YLB, YUB fields is different from that in the case of point quadtrees.
- As points are stored at the leaf level, checking to see if a point is in the circle defined by the range query needs to be performed only at the leaf level.
R-Trees

- Used to store *rectangular regions* of an image or a map such as those shown below.

- R-trees are particularly useful in storing very large amounts of data on disk.

- They provide a convenient way of minimizing the number of disk accesses.
R-Trees

- Each R-tree has an associated order, which is an integer K.
- Each nonleaf R-tree node contains a set of at most K rectangles and at least $\lceil K/2 \rceil$ rectangles (with the possible exception of the root).
- Intuitively, this says that each nonleaf node in the R-tree, with the exception of the root, must be at least “half” full.
- This feature makes R-trees appropriate for disk based retrieval because each disk access brings back a page containing several (i.e. at least $\frac{K}{2}$ rectangles).

R-trees manipulate two kinds of rectangles:

- “Real” rectangles (such as those shown in the map on the previous slide) or
- “Group” rectangles such as those shown below.
Example R-Tree

This is an R-tree of order 4, associated with the rectangles shown earlier.

R-tree nodes have the following structure:

\[
\text{rtnodetype} = \text{record} \\
\hspace{1cm} R_{e c_1}, \ldots, R_{e c_K}: \text{rectangle}; \\
\hspace{1cm} P_1, \ldots, P_K: \uparrow \text{rtnodetype} \\
\text{end}
\]
Insertion into an R-Tree
Insertion into an R-Tree

(a) (b)
An Incorrect Insertion into an R-Tree
Deletion in R-Trees

- Deletion of objects from R-trees may cause a node in the R-tree to “underflow” because an R-tree of order K must contain at least $\lceil K/2 \rceil$ rectangles (real or group) in it.

- When we delete a rectangle from an R-tree, we must ensure that that node is not “underfull.”

Example: Delete R9 from the following R-tree.

![R-tree example diagram](image-url)
Deletion in R-Trees

- If we delete R9, then the node containing rectangle R9 would have only one node in it.
- In this case, we must create a new logical grouping.
- One possibility is to reallocate the groups as follows:

<table>
<thead>
<tr>
<th>Group</th>
<th>Rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>R1, R2, R3</td>
</tr>
<tr>
<td>G2</td>
<td>R4, R6, R7</td>
</tr>
<tr>
<td>G3</td>
<td>R5, R8</td>
</tr>
</tbody>
</table>

- The new R-tree is:
Indexing High Dimensional data

Classical and traditional database systems deal with one-dimensional data set (number and string).

Databases experts developed a quiet number of advanced techniques that proved its efficiency in data storage, update, and retrieval (e.g. B-tree).

But in the past decade, more and more advanced applications emerged to the market and require manipulation of multidimensional data:

- Geographical Information System
- Medical databases
- Multimedia databases
Indexing High Dimensional data

<table>
<thead>
<tr>
<th>Dimensionality</th>
<th>Operations</th>
<th>Techniques</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>insert, delete, exact/partial match</td>
<td>B-tree, hash indexing</td>
<td>Data warehouse</td>
</tr>
<tr>
<td>2-10</td>
<td>insert, delete, exact match, spatial-temporal search</td>
<td>quad-tree,, K-D-B-tree, R-tree, R*-tree</td>
<td>GIS</td>
</tr>
<tr>
<td>>10</td>
<td>insert, delete, exact, similarity search</td>
<td>X-tree, TV-tree, M-tree</td>
<td>Multimedia databases, Medical databases</td>
</tr>
<tr>
<td>>50</td>
<td></td>
<td></td>
<td>search engine, data mining</td>
</tr>
</tbody>
</table>
Indexing High Dimensional data

The databases are very large and consist of millions of data objects with a lot of dimensions in almost all the applications mentioned.

The R-tree or The R*-tree work perfectly at a space with low dimensionality but their performance decrease when the dimensions number is greater than 6.
Indexing High Dimensional data

Therefore, new and appropriate indexing techniques are needed to query and provide an efficient access to these high-dimensional data.

- The X-tree
- TV-tree
The X-Tree (eXtended tree) is a variation of the R-Tree

It was developed to overcome the R-tree problems

The R-tree and its derivatives suffer from the “curse of dimensionality”, a phenomenon where performance drops as the number of dimensions increases

The major problem of the R-tree is the overlapping bounding box when the tree is in higher dimensions.
Indexing High Dimensional data

The X-tree

Performance of the R-tree Depending on the Dimension (Real Data)
Overlap of a node inside a R-tree is the percentage of the spaces that was covered by more than one hyperrectangle.

Overlap and Multi-Overlap of 2-dimensional data
The X-tree is based mainly on the R*-tree which is more powerful than R-tree or R+-tree.

It tries to avoid the overlaps generated by R*-tree in high-dimensional data.

It used an extended directory called the supernode to solve the overlapping problem.

The X-tree tries always to balance and adjust between the linear and hierarchical structure without having high overlap of nodes.
Indexing High Dimensional data

The X-tree

X-tree structure:
Indexing High Dimensional data

The X-tree

Three different nodes compose the X-tree:

Data node: contain minimum bounding rectangles (MBRs) and pointers to the actual data objects.

Normal directory node: contain MBRs with pointers to sub-MBRs. It also contains a split history used by inserting algorithm

| MBR₀ | SplitHistory₀ | Pointer₀ | ... | MBRₙ₋₁ | SplitHistoryₙ₋₁ | Pointerₙ₋₁ |

Supernode: larger directory node of variable size created to avoid further splitting which means less overlapping
The supernodes are created only if there is no other possibility to avoid overlap. But in some cases, this option may be avoided by choosing an overlap-minimal split axis.
Indexing High Dimensional data

The X-tree

Algorithms

Insertion is the most important algorithm of the X-tree because when we have a good structured tree it will be easy to query (search or retrieve) and update the data objects into the tree.

The insertion algorithm follows the following steps:
STEP1: Determines the MBR in which to insert the data object and recursively calls the insertion algorithm to actually insert the data object into the corresponding node.

STEP2: If no split occurs in the recursive insert, only the size of the corresponding MBRs has to be updated.

STEP3: In case of a split of the subnode, an additional MBR has to be added to the current node, which might cause an overflow of the node. In this case, the current node calls the split algorithm.

STEP4: The split algorithm tries to find a split of the node based on the topological and geometric properties of the MBRs.
STEP5: If the topological split however results in high overlap, the split algorithm tries next to find an overlap-minimal split which can be determined based on the split history.

STEP6: After the overlap-minimal split, if the nodes are underfilled, the number of MBRs will be compared against a threshold, if it does falls below the threshold then the split algorithm will be terminated without giving out a split. In this case:

- if the node is a normal directory node, it will be extended into a supernode.
- If it is already a supernode, then an extra block will extend it.

Determining the overlap-minimal split:

- The split is called overlap-minimal iff $||\text{MBR} (S_1) \cap \text{MBR} (S_2)||$ is minimal
- The split is called overlap-free iff $\text{MBR}||(S_1) \cap \text{MBR} (S_2)|| = 0$
Performance evaluation

The comparison between the X-tree and R*-tree. The result here was obtained by using a constant size database with increasing dimensionality. The size of the database stays constant even when dimensions increase. Only the data is changed

Speed-Up of X-tree over R*-tree on Point Queries

(100 MBytes of Synthetic Point Data)
The speedup was largely due to the fact that R*-tree has to access multiple paths in the directory at high dimensions.

The high overlap in high dimensions forces the R*-tree to access most of the directory pages and use a considerable CPU time.
The TV-tree

A new tree structure solves dimensionality curse problem by using a dynamic number of dimensions for indexing.

It uses few dimensions to index nodes that are near to the root to discriminate among the objects. As it traverses the tree it uses more and more dimensions.

The tree is to contract and extend the feature vectors dynamically acting as a telescope. That is why researchers called this method Telescopic-Vector tree (TV-tree).
TV-tree structure (hierarchical structure)

- Objects (feature vectors) are clustered into leaf nodes of the tree.
- The description of their Minimum Bounding Region (MBR) is stored in its parent node.
- Parent nodes are recursively grouped until the root is formed.
The shape of the MBR can be chosen to fit the application; it may be:

- a (hyper-) rectangle,
- cube,
- sphere

The simplest shape to represent is the sphere, requiring only the center and a radius.
Node structure

- Each node represents the minimum-bounding region (MBR) of all its descendants.
- Each region has a center (telescopic vector) and a scalar radius.
 - TMBR denotes the MBR with telescopic vector.
 - TV-x denotes TV-tree with x active dimension. X determines the discriminatory power of the tree.
TV-tree structure

- Each node contains a set of branches and each branch is represented by a TMBR, which contains all the descendants of that branch.
 - TMBRs are allowed to overlap.
 - Each node occupies exactly one disk page.

Here are two examples of a TV-tree
Indexing High Dimensional data
The TV-tree

Structure of TV-1
Indexing High Dimensional data

The TV-tree

TV-tree having multiple levels
Indexing High Dimensional data
The TV-tree

Algorithms

- Search
- Insertion
- Deletion
- Extending and contracting
Indexing High Dimensional data

The TV-tree

Search

- Exact or range queries:
 - the algorithm starts with the root and examines each branch that intersects the search region, recursively following these branches. Multiple branches may be traversed because TMBRs are allowed to overlap.

- nearest-neighbor queries:
 - use branch-and-bound algorithm: compute the upper and lower bounds for the distance of branches descend the most promising one and disregarding branches that are too far away.
Indexing High Dimensional data
The TV-tree

Insertion

- we traverse the tree, choosing the branch at each stage that seems **most suitable** to hold the new object.
- Insert the object in the reached leaf.

The selection of the suitable branch follows the following criteria (in descending order)
Indexing High Dimensional data
The TV-tree

1. Minimum increase in overlapping regions within the node

- Choose the TMBR such that after update, the number of new pairs of overlapping TMBR is minimized within the node introduced. *R1 is selected because extending R2 or R3 will lead to a new pair of overlapping regions.*
2. Minimum decrease in dimensionality.

Choose the TMBR with which the new object can agree on as many coordinates as possible, so that it can accommodate the new object by contracting its center as little as possible. *R1 is selected over R2 because selecting R2 will result in a decrease in dimensionality of R2.*
3. Minimum increase in radius.

\[R1 \text{ is selected over } R2 \text{ because the resulting region will have a smaller radius} \]
4. Minimum distance from the center of the TMBR to the point.

R1 is selected over R2 because R1's center is closer to the point to be inserted
The insertion operation may result to overflow that is handled by:

- splitting the node
- or by re-inserting some of its contents.

After the insertion, split, or re-insert operations that might occur while adding new object, the TMBRs of the affected nodes along the path are updated.
The following schema is followed to handle overflow:

- For a leaf node, a pre-determined percentage of the leaf contents will be reinserted if it is the first time a leaf node overflows during the current insertion (pick those that are farthest away from the center of the region). Otherwise, the leaf node is split in two.

- For an internal node, the node is always split; the split may propagate upwards.
Deletion

- Deletion works as normal.
- In case there is an underflow, the remaining branches of the node are deleted and re-inserted.
Indexing High Dimensional data
The TV-tree

Extending and contracting

- **Extending** is done at the time of split and reinsertion
- **contraction** occurs during insertion.
Indexing High Dimensional data

The TV-tree

Experimental Results

- The TV-tree outperforms the R*-tree in all operations. Here are the results represented in some figures (A 4K-page size is used and 100 bytes per object):

<table>
<thead>
<tr>
<th>Dictionary size</th>
<th>Disk access per insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R*-tree</td>
</tr>
<tr>
<td>4,000</td>
<td>5.25</td>
</tr>
<tr>
<td>8,000</td>
<td>5.51</td>
</tr>
<tr>
<td>12,000</td>
<td>6.19</td>
</tr>
<tr>
<td>16,000</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Disk access per insertion
Indexing High Dimensional data

The TV-tree

Experimental Results

Disk access of TV-tree and R*-tree (exact match queries)
Indexing High Dimensional data

The TV-tree

Experimental Results

Spaces usage of TV-tree and R*-tree
Indexing High Dimensional data
The R-tree

R-tree structure
Indexing High Dimensional data

The TV-tree

A set of rectangles (solid line) and the bounding boxes (dashed line) of the nodes of an R-tree for the rectangles. The R-tree is shown on the right.
Indexing High Dimensional data
The TV-tree

References

1. Informix Decision Support Indexing for the Enterprise Data Warehouse

4. Wu Hai Liang, Hubert, Lam Man Lung, Lo Ming Fun, Yuen Chi Kei, Ng Chun Bong: A Survey on High Dimensional Spaces and Indexing