
An Efficient Approach for Mining Fault-Tolerant Frequent
Patterns based on Bit Vector Representations

Jia-Ling Koh and Pei-Wy Yo

Department of Information and Computer Education

National Taiwan Normal University
Taipei, Taiwan

Email: jlkoh@ice.ntnu.edu.tw

 Abstract
In this paper, an algorithm, called VB-FT-Mine (Vectors-Based Fault–Tolerant
frequent patterns Mining), is proposed for mining fault-tolerant frequent patterns
efficiently. In this approach, fault–tolerant appearing vectors are designed to
represent the distribution that the candidate patterns contained in data sets with
fault-tolerance. VB-FT-Mine algorithm applies depth-first pattern growing method
to generate candidate patterns. The fault-tolerant appearing vectors of candidates
are obtained systematically, and the algorithm decides whether a candidate is a
fault-tolerant frequent pattern quickly by performing vector operations on bit
vectors. The experimental results show that VB-FT-Mine algorithm has better
performance on execution time significantly than FT-Apriori algorithm proposed
previously.

1. Introduction
Among the various data mining applications, mining association rules is an important one
[1]. Several efficient algorithms have been proposed for finding frequent patterns and
association rules are derived from the frequent patterns, such as the Apriori[1], DHP[3],
and FP-growth[2]. When mining frequent patterns, an expected minimum support may
cause only few frequent patterns are discovered because real-world data tends to be dirty.
Although much more specific frequent patterns could be obtained by lowering the
minimum supports, no general information about the representative frequent patterns is
returned. The problem of mining fault-tolerant frequent patterns (itemsets) was defined and
solved in [5] by proposing FT-Apriori algorithm. FT-Apriori algorithm was extended from
Apriori Approach, in which downward closure property is applicable for mining fault-
tolerant frequent patterns. Similar to Apriori-like[1] algorithms, FT-Apriori algorithm
suffered from generating a large number of candidates and repeatedly scanning database.
Moreover, fault toleration usually introduces much huge number of candidates when
increasing the fault tolerance or decreasing the support thresholds.

In this paper, an algorithm, called VB-FT-Mine (Vector-Based Fault–Tolerant frequent
patterns Mining), is proposed for speeding up the process of mining fault-tolerant frequent
patterns. In this approach, fault–tolerant appearing vectors are designed to represent the
distribution that the candidate patterns contained in data sets with fault-tolerance. VB-FT-
Mine algorithm applies depth-first pattern growing method to generate candidate patterns.
The fault-tolerant appearing vectors of candidate patterns are obtained systematically, and

the algorithm decides whether a candidate is a fault-tolerant frequent pattern quickly by
performing vector operations on bit vectors. The experimental results show that VB-FT-
Mine algorithm has better performance significantly on execution time than FT-Apriori
algorithm[5] proposed previously.

The remaining of this paper is organized as follows. The problem of fault-tolerant
frequent pattern mining is defined in Section 2. In Section 3, the bit vector representation is
introduced and applied to develop the proposed VB-FT-Mine Algorithm. The performance
study of VB-FT-Mine is reported in Section 4, which shows the efficiency comparison
with FT-Apriori. Finally, Section 5 concludes this paper.

2. Preliminaries
The following definitions refer to [1]. Let I = {i1, i2, …, im} be a set of literals, called items.
A set of items is called an itemset. Itemsets containing k items are called k-itemsets. Let
DB be a database of transactions, where each transaction T in DB is an itemset such that
T⊆I. For a given itemset X⊆I, we say that a transaction T contains itemset X if and only if
X⊆T. The support count of an itemset X in DB, denoted as SupX, is the number of
transactions in DB containing X. Given a minimum support threshold s, an itemset X is
called a frequent pattern in DB if SupX ≥ s. Otherwise, X is named an infrequent pattern.

Transaction ID Items

T1 BDEF
T2 ACDE
T3 BEFG
T4 CFG
T5 ABDEG

 (a)

Item Appearing Vector
A <0,1,0,0,1>
B <1,0,1,0,1>
C <0,1,0,1,0>
D <1,1,0,0,1>
E <1,1,1,0,1>
F <1,0,1,1,0>
G <0,0,1,1,1>

 (b)
Figure 1: Sample database TDB and its appearing vector table

Example 1 In the transaction database TDB shown in Figure 1(a), if the minimum support
threshold is set to 4, E is the only one frequent pattern. Although lowering the minimum
support threshold to 3 will get 7 frequent patterns (B, D, E, F, G, BD, and DE), the result still
consists of short patterns and which is less representative (with lower support). However,
observe the transactions in database TDB closely, three transactions T1, T3, and T5 contain
four out of the five items: B, D, E, F, and G. Therefore, when checking whether a transaction
containing a pattern with fault-tolerance(contain 4 out of 5 items), a longer “approximate”
pattern (BDEFG) with support count 4 is obtained. This problem of mining fault-tolerant
frequent patterns was defined in [5].

Definition 1 (Fault-tolerant support): Given a fault toleranceδ(δ>0) and an itemset P.
A transaction T＝(tid, S) is said to FT-contain itemset P under fault toleranceδiff there
exists P´⊆P such that P´⊆S and |P´|≥(|P|-δ). The number of transactions in a database DB
which FT-contain itemset P is called the FT-support of P under fault toleranceδ, denoted as

FT-supδ(P). The set of transactions FT-containing P is called the FT-body of P, denoted as
FT-bodyδ(P). For each item p in itemset P, the number of transactions in FT-bodyδ(P)

containing item x is called the item support of x in FT-bodyδ(P), denoted as Item-Sup δ
P (x).

Definition 2 (Fault-tolerant frequent pattern): Given a fault tolerance δ, a FT-support
threshold min-supFT, and a frequent-item support threshold min-sup item. An itemset P is
called a fault-tolerant frequent pattern iff
1) FT-supδ (P) ≥min-sup FT; and
2) For each item x∈ P, Item-Sup δ

P (x) ≥min-supitem .

3. Bit Vector Representations
3.1 Appearing Vectors
Let |DB| denote the number of transactions in database. For each item x, the appearing vector
of x, denoted as Appearx, is a binary vector of |DB| dimensions. If x is contained in the ith
transaction, the ith dimension in its appearing vector is set to be 1; otherwise, the dimension
is set to be 0. Then, an appearing vector table, which consists of appearing vectors of various
items, is constructed to represent the distribution of items in a transaction database.

Consider the sample database TDB shown in Table 1. There are 7 various items and 5
transactions in the database. Item A is contained in transactions T2 and T5, thus the
appearing vector of A, denoted as AppearA, is <0,1,0,0,1>. Similarly, the appearing vectors
of B, C, D, E, F, and G are obtained to construct the appearing vector table of TDB, as
shown in Table 2.

For each item x, the number of dimensions with value 1 in Appearx implies its support
count in the database. This value could be obtained by performing a support counting
function, Count(), which computes an inner product operation on Appearx and a |DB|-
dimensional vector with 1s in all the dimensions (denoted as I|DB|).

An appearing vector is also applied to represent the distribution of an itemset P in
transactions of a database. Suppose itemset P consists of k items: i1,i2 ...,and ik . The appearing
vector of P is obtained by performing AND operations on appearing vectors of its k elements.
Similarly, support count of P could be obtained quickly by performing the same support
counting function.

3.2 FT_appearing vectors
Given a fault tolerance δ, the FT-appearing vector of an itemset P is denoted as FT-
AppearP(δ). If the ith transaction FT-contains itemset P, the ith dimension in FT-AppearP(δ)
is set to be 1; otherwise, the dimension is set to be 0. The appearing vector of itemset P is
regarded the FT-appearing vector of P under fault tolerance 0.

The dimensions in FT-AppearP(δ) with 1s imply the corresponding transactions in FT-
bodyδ(P). Thus, the FT-support of an itemset P under fault tolerance δ could be obtained by
inputting FT-AppearP(δ) to the support counting function, Count(), introduced in section 3.1.
In addition, for each item x in P, Item-Sup δ

P (x) equals to the number of dimensions with 1s
after performing AND operation on FT-AppearP(δ) and Appearx. That is, Item-Sup δ

P (x)
could be obtained by performing an inner product operation on FT-AppearP(δ) and Appearx.

3.3 Generation of FT-appearing vectors
Given a fault toleranceδ, a transaction T FT-contains an itemset P means T contains at

least |P|-δitems in P. The cost is significant to compute the appearing vectors of these C ||
||

P
P δ−

subsets and perform (C ||
||

P
P δ−

 -1) OR operations among these vectors when the number of
elements in P is large. For solving this problem, the following theorem provides a property
for generating FT_appearing vectors recurrently.

 [Theorem 1] Let P denote a nonempty itemset and P´=P∪{x}, where x is an item not in P.

A transaction T FT-contains P´ under fault toleranceδiff
1) T FT-contains P under fault tolerance (δ-1), or
2) T contains x and FT-contains P under fault tolerance δ.
Suppose itemset P´ is obtained by inserting an item x into a nonempty itemset P.

According to theorem 1, the FT-appearing vector FT-AppearP´ could be computed from FT-
AppearP and Appearx according to the following definition of recurrent function.

Recurrent Function for FP-appearing vectors:
Input: Itemset P, item x(x∉P), FT_appearing vectors of P, Appear x, and fault tolerance δ.
Output: the appearing vectors of P´, where P´=P∪{x}.
 P´=P∪{x};
If | P´|≤δ, FT-AppearP´(δ) = I|DB|;
If δ =0, FT-AppearP´(δ)=AppearP´=FT-AppearP(0)∧Appear x;
Otherwise, FT-Appear P´(δ)=FT-AppearP(δ)-1)∨(FT-AppearP(δ))∧Appear x).

That is, for any given pattern P and an item x, where x is not in P, FT-appearing vectors

of the pattern P´=P∪{x} with various fault tolerances could be obtained when all the FT-
appearing vectors of P with fault tolerance from 0 toδare known.

3.4 VB-FT-Mine Algorithm

VB-FT-Mine algorithm is designed based on the FT-appearing vectors representation and
the recurrent relation introduced in Section 3.3. First, the transactions in database are read in
one by one to construct an appearing vector table. Then the candidates are generated by
performing depth-first pattern growing method. For each newly generated candidate pattern,
the recurrent function defined in Section 3.3 is performed to obtain its FT-appearing vectors
with various tolerances. The FT-support and item-supports of a pattern are thus checked
efficiently by performing inner product operations on appearing vectors as introduced in
Section 3.2. The VB-FT-Mine algorithm is shown as follows.

Algorithm VB-FT-Mine
Input: Transaction database DB, min-supitem, min-supFT, and fault tolerance δ.
Output: the complete set of FT-patterns.

1. Scan DB once to construct the appearing vector table.
2. Compute the support count for each item x. An item x is global frequent iff DB

xSup ≥
min-supitem. Let the global frequent items be denoted as x1,x2,..., xn.

3. For i=1 to n {
(a) Initialization: Set P = {xi}; FT-AppearP(0) =Appearxi ;

Set j= i+1; Push (P, FT-appearing vectors of P, j) into stack;
(b) While (stack is not empty){

 (b-1) Generate a candidate pattern P´= P ∪ {xj};
 FT-AppearP’(0) = FT-AppearP(0)∧Appearx;

For (k = 1 to δ)
{ If | P´|≤k, FT-AppearP´(k) = I|DB| ;

 else FT-Appear P´(k) =FT-AppearP(k-1)∨(FT-AppearP(k)∧Appearxj)}
(b-2) Compute FT-supδ(P´) = FT-AppearC(δ) ⋅ I|DB|;
(b-3) If FT-supδ(P´)≥min-supFT,

for (each item x in P´) performs FT-AppearP´(δ)⋅AppearX to obtain Item-
Sup δ

'P (x);
(b-4) If Item-Sup δ

'P (x)≥min-supItem
for (each x in P´) { Output P´ as a result;

Set P = P´ and j=j+1;
If j≤n Push(P, FT-appearing vectors of P, j) into stack;}

 else Repeat
{ Pop(P, P’s FT-appearing vectors, j) from stack; j=j+1;}

until ((j≤n) or (stack is empty))
} /* end while

 } /* end for

4. Performance Evaluation
In order to show the efficiency and effectiveness of our approach by comparing with FT-
Apriori[5] algorithm, both algorithms are implemented using Microsoft Visual C++ 6.0. The
experiments are performed in a PC with an Intel Pentium4 2.4GHz CPU and 256MB main
memory, running Microsoft Windows XP Professional. The experiments were performed on
synthetic data generated by the IBM synthetic market-basket data generator.

In the following experiments, the three run-time parameters (min-supitem,min-supFT , and
δ) are controlled individually for observing their effects on execution time of the two
mining algorithms. In addition, the execution times on different data sets with various setting
on database size and number of items are evaluated in the other two experiments.
 Figure 5(a) shows that the execution time of VB-FT-Mine is much less than the time of
FT-Apriori. When the setting on min-sup item is decreased, more candidate itemsets are
generated. Therefore, the execution time of both algorithms increases as min-supitem is
decreased. Moreover, the increasing rates of both algorithms are similar. However, VB-FT-
Mine is about 30 times faster than FT-Apriori with the same support threshold settings.
Figure 5(b) shows, when the setting on min-supFT is decreased, there are also more candidate
itemsets generated. Thus, the execution time of both algorithms increases as min-sup FT is
decreased. The execution time of FT-Apriori increases significantly when min-supFT is lower
than |D|*6%. However, the execution time of VB-FT-Mine keeps stable when min-supFT is

min-sup item=|D|*2.5%

0

1000

2000

3000

4000

5000

6000

min-sup FT=|D|*%

ru
n_

tim
e

(s
ec

.)

FT-Apriori

FFT-Mine

FT-Apriori 5210 4427 1583 652 425 252 152

FFT-Mine 129 129 87 37 14 6 3

4 5 6 7 8 9 10

min-sup FT=|D|*15%
min-sup item=|D|*10%

0
2000
4000
6000
8000

10000

δ

ru
n

ti
m

e(
se

c)

FT_Apriori

FFT-Mine

FT_Apriori 287 1158 3422 8143

FFT-Mine 9 70 335 1081

1 2 3 4

min-sup FT=|D|*15%
min-sup item=|D|*10%

0
300
600
900

1200
1500

|D|*(10k)

ru
n

ti
m

e(
se

c)

FT_Apriori

FFT-Mine

FT_Apriori 117 322 484 645 1336

FFT-Mine 5 11 13 23 43

20 40 60 80 100

min-sup FT=|D|*10%

0
3000
6000

9000
12000
15000

min_sup item =|D|*%

ru
n

ti
m

e
(s

ec
)

FT-Apriori

FFT-Mine

FT-Apriori 14107 7335 3567 1606 974

FFT-Mine 488 246 109 50 29

5 6 7 8 9

min-sup FT=|D|*10%
min-sup item=|D|*6%

|D|=100000

0

500

1000

1500

2000

|N|

ru
n

ti
m

e
(s

ec
)

FT-Apriori

FFT-Mine

FT-Apriori 1884 248 108 23 2

FFT-Mine 61 9 4 1 1

500 600 700 800 900

 (a) T10I8D100kN450 (b) T10I8D10kN1k

 (c) T10I8D100kN450 (d) T10I8N450

(e) T10I8D100k

Figure 5: Experimental Results

below |D|*5%. When the fault tolerance δ increases, much more candidates are generated.
As Figure 5(c) shows, a minor increase of fault tolerance increases the execution time of FT-
Apriori algorithm dramatically. The growing ratio of VB-FT-Mine is less than FT-Apriori,
which indicates the scalability of VB-FT-Mine with respect to fault tolerance.VB-FT-Mine
algorithm scans the database only once. The result in Figure 5(d) shows, as expected, the
execution time of VB-FT-Mine glow more slowly than the one of FT-Apriori as the size of
database increases. As the number of various items in database |N| increases, the average size
of the transactions remains 10, the data distribution in the database becomes sparser. Figure
5(e) shows that, execution times of both algorithms decrease as N increases because less
frequent patterns are generated in the mining process. As the figure shows, for FT-Apriori
algorithm, the costs to handle a huge number of candidate patterns are more and more
significant when |N| is below 600. However, this factor does not influence the execution
time of FT-Apriori very much. From the above experiments, in general, VB-FT-Mine
algorithm outperforms FT-Apriori on execution time with respect to various parameters
setting. Especially, the VB-FT-Mine has better scalability on execution time with respect to
support thresholds and fault tolerance than FT-Apriori.

5. Conclusion
In this paper, an algorithm named VB-FT-Mine is proposed for mining fault-tolerant frequent
patterns efficiently. VB-FT-Mine algorithm is designed based on the bit vector
representations. According to the depth-first pattern growing strategy, the FT_supports and
item supports of candidate patterns could be obtained by performing vector operations on
FT_appearing vectors efficiently. The experimental results show our approach has significant
improvement on execution time than FT-Apriori algorithm. To extend VB-FT-Mine
algorithm by applying the strategies for mining frequent patterns in data streams provide a
good solution for this problem, which is under our study currently.

References
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Proc. of

Int. Conf. on Very Large Data Bases, 1994.
[2] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach”, Data Mining and Knowledge Discovery,
8(1):53-87, 2004.

[3] J.S. Park, M.S. Chen, and P.S. Yu, “An Effective Hash-based Algorithm for Mining
Association Rules,” in Proc. of the ACM SIGMOD International Conference on
Management of Data (SIGMOD'95), May, pages 175-186, 1995.

[4] J. Pei, A.K.H. Tung, and J. Han, “Fault-Tolerant Frequent Pattern Mining: Problems and
Challenges,” in Proc. of ACM-SIGMOD Int. Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD'01), 2001.

[5] S.-S. Wang and S.-Y. Lee, “Mining Fault-Tolerant Frequent Patterns in Large Database,”
in Proc. of Workshop on Software Engineering and Database Systems, International
Computer Symposium, Taiwan, 2002.

